基于CEEMDAN-小波混合特征与时空注意力CNN的轴承复合故障诊断Bearings composite fault diagnosis based on CEEMDAN-wavelet hybrid features and spatiotemporal attention CNN
董林峰,马洁
摘要(Abstract):
针对轴承复合故障诊断中存在噪声干扰严重、信噪比低、复合故障特征耦合性强等问题,提出一种融合自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)、小波能量特征以及时空注意力卷积神经网络(spatiotemporal attention convolutional neural network, STACNN)的轴承故障诊断方法。将CEEMDAN对振动信号的自适应分解优势与小波能量特征提取相结合,更全面、精准地提取轴承故障相关特征;通过构建包含空间卷积模块、时空注意力门控机制以及时间注意力门控循环单元(gated recurrent unit, GRU)的神经网络模型,有效提升了模型对时空特征的学习和表达能力;利用智能数据增强技术扩充训练数据的多样性,同时借助自适应参数优化策略,寻找最优的模型参数组合,提高模型诊断性能。实验结果表明:该方法在强噪声干扰下诊断准确率达98.92%;与传统特征提取、神经网络和注意力机制等方法相比,准确率明显提升,证明了该方法在轴承故障诊断中的有效性和优越性。
关键词(KeyWords): 自适应噪声完备集合经验模态分解;时空注意力卷积神经网络;复合故障诊断;小波能量特征
基金项目(Foundation): 国家自然科学基金项目(61973041)
作者(Author): 董林峰,马洁
DOI: 10.16508/j.cnki.11-5866/n.2025.05.008
参考文献(References):
- [1]李恒,张氢,秦仙蓉,等.基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J].振动与冲击,2018,37(19):124-131.LI H,ZHANG Q,QIN X R,et al. Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network[J]. Journal of Vibration and Shock,2018,37(19):124-131.(in Chinese)
- [2] LIU T,LI X S,SUN J S,et al. A post-processing method called Fourier transform based on local maxima of autocorrelation function for extracting fault feature of bearings[J]. Advanced Engineering Informatics,2024,62(Part B):102766.
- [3] DU J F,LI X Y,GAO Y P,et al. Integrated gradient-based continuous wavelet transform for bearing fault diagnosis[J].Sensors,2022,22(22):8760.
- [4] SHI L,LIU W C,YOU D Z,et al. Rolling bearing fault diagnosis based on CEEMDAN and CNN-SVM[J]. Applied Sciences ,2024,14(13):5847.
- [5] SHAH A K,YADAV A,MALIK H. EMD and ANN based intelligent model for bearing fault diagnosis[J]. Journal of Intelligent&Fuzzy Systems,2018,35(5):5391-5402.
- [6] VERSTRAETE D,FERRADA A,LOPEZ DROGUETT E,et al.Deep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearings[J]. Shock and Vibration,2017,1:5067651.
- [7] LIU H,ZHOU J Z,ZHENG Y,et al. Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders[J].ISA Transactions,2018,77:167-178.
- [8] HUANG T,ZHANG Q,TANG X A,et al. A novel fault diagnosis method based on CNN and LSTM and its application in fault diagnosis for complex systems[J]. Artificial Intelligence Review,2022,55:1289-1315.
- [9] LI Y Z,LUO X,XIE Y H,et al. Multi-head spatio-temporal attention based parallel GRU architecture:a novel multi-sensor fusion method for mechanical fault diagnosis[J]. Measurement Science and Technology,2024,35(1):015111.
- [10] HE J J,WU P,TONG Y Z,et al. Bearing fault diagnosis via improved one-dimensional multi-scale dilated CNN[J].Sensors,2021,21(21):7319.
- [11] GADANAYAK D A,MALLICK R K. Interharmonics based high impedance fault detection in distribution systems using maximum overlap wavelet packet transform and a modified empirical mode decomposition[J]. International Journal of Electrical Power&Energy Systems,2019,112:282-293.
- [12] YU C C,NING Y Q,QIN Y,et al. Multi-label fault diagnosis of rolling bearing based on meta-learning[J]. Neural Computing and Applications,2021,33(10):5393-5407.
- [13] TANG J H,WU J M,HU B B,et al. An intelligent diagnosis method using fault feature regions for untrained compound faults of rolling bearings[J]. Measurement,2022,204:112100.
- [14] WANG B,LEI Y G,LI N P,et al. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Transactions on Reliability,2020,69(1):401-412.
- [15]雷亚国,韩天宇,王彪,等. XJTU-SY滚动轴承加速寿命试验数据集解读[J].机械工程学报,2019,55(16):1-6.LEI Y G,HAN T Y,WANG B,et al. XJTU-SY rolling element bearing accelerated life test datasets:a tutorial[J]. Journal of Mechanical Engineering,2019,55(16):1-6.(in Chinese)