基于改进YOLOv9的新疆棉田虫害识别模型A pest detection model for Xinjiang cotton fields based on improved YOLOv9
梁爽,刘宗放,郭祥云
摘要(Abstract):
虫害对棉花的产量和质量影响严重,虫害识别是虫害防治的重要指施。针对许多虫害外观相似,现有算法难以区分细微差异,导致分类精度较低的问题,提出了一种基于改进YOLOv9的高效棉田虫害识别模型YOLO-ILE。引入Involution神经网络算子,提升模型对小目标的识别能力;采用大型可分离核注意力(large separable kernel attention, LSKA)模块,提升识别精度并减少计算复杂度;加入指数移动平均(exponential moving average, EMA)注意力机制,提升模型对关键特征的捕获能力。研究结果表明:在构建的新疆棉田虫害数据集上,YOLO-ILE模型的mAP@0.5和mAP@0.5∶0.95指标分别达到了93.2%、75.4%,相较于YOLOv9模型,分别提升了2.6、2.3百分点;与其他YOLO系列模型相比,在棉田虫害识别上的mAP@0.5指标达到了最优。研究成果有助于推动棉田虫害防控的数字化与智能化。
关键词(KeyWords): YOLOv9;棉田虫害识别;注意力机制;神经网络算子;深度学习
基金项目(Foundation):
作者(Author): 梁爽,刘宗放,郭祥云
DOI: 10.16508/j.cnki.11-5866/n.2025.05.011
参考文献(References):
- [1]雒珺瑜,张帅,任相亮,等.近十年我国棉花虫害研究进展[J].棉花学报,2017,29(S1):100-112.LUO J Y, ZHANG S, REN X L, et al. Research progress of cotton insect pests in China in recent ten years[J]. Cotton Science,2017,29(S1):100-112.(in Chinese)
- [2] ZHANG M Y,LIU C F,LI Z H,et al. From convolutional networks to vision transformers:evolution of deep learning in agricultural pest and disease identification[J]. Agronomy,2025,15(5):1079.
- [3]张友为,王鑫鑫,范晓飞.基于深度学习的玉米和番茄病虫害检测技术研究进展[J].江苏农业科学,2024,52(10):10-20.ZHANG Y W,WANG X X,FAN X F. Research progress on deep learning-based detection of diseases and pests in maize and tomato[J]. Jiangsu Agricultural Sciences,2024,52(10):10-20.(in Chinese)
- [4] PATEL V K, ABHISHEK K, SELVARAJAN S. Optimized recurrent neural network-based early diagnosis of crop pest and diseases in agriculture[J]. Discover Computing, 2024,27(1):43.
- [5]黄建荣.稻纵卷叶螟和褐飞虱为害水稻的光谱监测[D].南京:南京农业大学,2013.HUANG J R. Detection of Cnaphalocrocis medinalis Güenée and Nilaparvata lugens(St?l)damage in rice using spectral data[D]. Nanjing:Nanjing Agricultural University,2013.(in Chinese)
- [6] WANG C Y,BOCHKOVSKIY A,LIAO H Y M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for realtime object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Los Alamitos, CA, USA:IEEE Computer Society,2023:7464-7475.
- [7]于蕾,胡聪,张奇.自动化虫害图像智能分析系统设计[J].实验技术与管理,2022,39(12):137-142.YU L,HU C,ZHANG Q. Design of automatic pest image intelligent analysis system[J]. Experimental Technology and Management,2022,39(12):137-142.(in Chinese)
- [8]王曾龙,蒋勇勇,彭海峰,等.一种基于Faster-RCNN的棉花虫害识别与统计方法[J].大众科技,2023,25(5):5-7.WANG Z L,JIANG Y Y,PENG H F,et al. A method for cotton pests identification and statistics based on Faster-RCNN[J].Popular Science&Technology,2023,25(5):5-7.(in Chinese)
- [9]巨志勇,易成,周重臣,等. YOLO-Rice:一种基于YOLOv5的水稻虫害检测[J].控制工程,2024,31(12):2196-2205.JU Z Y,YI C,ZHOU Z C,et al. YOLO-Rice:a rice pest detection based on YOLOv5[J]. Control Engineering of China,2024,31(12):2196-2205.(in Chinese)
- [10]王泰华,郭亚州,张家乐,等.基于改进YOLO v5s的水稻害虫识别研究[J].农业机械学报,2024,55(11):39-48.WANG T H,GUO Y Z,ZHANG J L,et al. Rice pest identification based on improved YOLO v5s[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(11):39-48.(in Chinese)
- [11]杨满仙,陈燕红,李雨晴,等.新疆棉田主要昆虫图像数据集CottonInsect[J].中国科学数据(中英文网络版),2025,10(1):62-72.YANG M X,CHEN Y H,LI Y Q,et al. A dataset of common insects in Xinjiang cotton fields:CottonInsect[J]. China Scientific Data,2025,10(1):62-72.(in Chinese)
- [12]杨玉艳,肖茹.基于改进DCGAN的数据增强方法研究:以BDD100K数据集为例[J].信息与电脑,2025,37(10):37-39.YANG Y Y,XIAO R. Research on data augmentation method based on improved DCGAN:taking the BDD100K dataset as an example[J]. Information&Computer,2025,37(10):37-39.(in Chinese)
- [13]姚百蔚,邵佳慧,徐英杰,等.基于改进YOLOv9的番茄病害检测[J].计算机技术与发展,2025,35(6):56-61.YAO B W,SHAO J H,XU Y J,et al. Tomato disease detection based on improved YOLOv9[J]. Computer Technology and Development,2025,35(6):56-61.(in Chinese)
- [14]罗希,贺强,张宁轩,等.基于改进型YOLOv9的绝缘子及缺陷检测[J].机电工程技术,2024,53(10):197-202.LUO X,HE Q,ZHANG N X,et al. Insulator and defect detection based on improved YOLOv9[J]. Mechanical&Electrical Engineering Technology,2024,53(10):197-202.(in Chinese)
- [15] TIAN Y J,YE Q X,DOERMANN D. YOLOv12:attentioncentric real-time object detectors[EB/OL].(2025-02-18)[2025-06-09]. https://doi. org/10. 48550/arXiv. 2502. 12524.
- [16]周啟雪,余映,胡家绿.利用Involution级联注意力机制的古代壁画图像修复网络[J/OL].计算机科学,2025:1-11.(2025-02-28)[2025-03-01]. https://link. cnki. net/urlid/50.1075. TP. 20250227. 1624. 055.ZHOU Q X,YU Y,HU J L. Ancient mural image restoration network using Involution cascaded attention mechanism[J/OL].Computer Science,2025:1-11.(2025-02-28)[2025-03-01].https://link. cnki. net/urlid/50. 1075. TP. 20250227. 1624. 055.(in Chinese)
- [17]张翔.基于深度学习的病害孢子出芽率精准检测及系统实现[D].海口:海南大学,2022.ZHANG X. Accurate detection and system implementation of disease spore germination rate based on deep learning[D].Haikou:Hainan University,2022.(in Chinese)
- [18]刘子龙,张磊.基于LSKA-Transposed与ECA融合的YOLOv5苹果目标检测算法[J/OL].控制工程,2025:1-11.(2025-03-06)[2025-06-09]. https://doi. org/10. 14107/j. cnki. kzgc.20240944.LIU Z L,ZHANG L. YOLOv5 apple target detection algorithm based on LSKA-Transposed and ECA fusion[J/OL]. Control Engineering of China,2025:1-11.(2025-03-06)[2025-06-09]. https://doi. org/10. 14107/j. cnki. kzgc. 20240944.(in Chinese)
- [19] ZHAO Y Z,ZHAO H D,SHI J F. YOLOv8-MAH:multiattribute recognition model for vehicles[J]. Pattern Recognition,2025,167:111849.
- [20] OUYANG D L,HE S,ZHANG G Z,et al. Efficient multi-scale attention module with cross-spatial learning[C]//2023 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). New York, USA:IEEE,2023:1-5.